
e Son of Suda On-Line

Ryan Baumann

Introduction
Integrating Digital Papyrology (IDP) is a multi-institutional project aimed at establishing and improving relationships
between three digital papyrological resources: the Duke Databank of Documentary Papyri (DDbDP), the Heidelberger
Gesamtverzeichnis der griechischen Papyrusurkunden Ägyptens (HGV), and the Advanced Papyrological Information Sys-
tem (APIS). Started in 1983, the DDbDP collects a number of digital transcriptions of ancient documentary papyri from
print editions. HGV and APIS, meanwhile, collect metadata (place of origin, date, keywords, bibliography, etc.) and im-
ages of much of the same material. A uniëcation of these data sources would allow linking the digital transcriptions of texts
with the images, dates, and other metadata, and in 2007 the Andrew W. Mellon Foundation funded a project, “Integrating
Digital Papyrology,” to begin this process. Over the years the DDbDP has undergone a number of transitions, and this
project also supported its transition from an idiosyncratic SGML encoding to standards-based EpiDoc XML markup.1 In
addition the grant provided funding to improve and ënish the ërst generation of a tool for searching and browsing the
uniëed collection of materials, called the Papyrological Navigator (or PN). At the conclusion of the IDP grant, Mellon
funded a second phase of the project (called IDP2) with the following goals:

1. Improve operability of the PN search interface on the merged and mapped data from the DDbDP, HGV,
and APIS.

2. Facilitate third-party use of the data and tools.

3. Create a version controlled, transparent and fully audited, multi-author, web-based, real-time, tagless,
editing environment, which — in tandem with a new editorial infrastructure — will allow the entire
community of papyrologists to take control of the process of populating these communal assets with
data.

(Elliott 2008)
e environment described in the last item, inspired by the Suda On-Line,2 was named the Son of Suda On-Line

(SoSOL). ough it takes its name and inspiration from SOL, SoSOL was written from the ground up to incorporate new
technologies, address project-speciëc problems, and move toward more open data and tooling (Elliott 2008; Sosin 2010).
is article aims at not only a description of the resulting software, but also of the challenges encountered and solutions
chosen in its formulation, to encourage broader adoption or discussion of both.

e Son of Suda On-Line
ough collaborative online editing environments such as Wikipedia have the advantage of allowing anyone to contribute,
many question the scholarly integrity of resources which can be edited by anyone unvetted. e Suda On-Line, which
actually predated the existence of Wikipedia by two years, addressed this problem by marking submitted translations with
their level of editorial vetting (Finkel et al. 2000). is combination of openness to contribution with strong editorial
control was the guiding principle in the design of the Son of Suda On-Line.

1SGML (Standard Generalized Markup Language), ërst formalized as a standard in 1986, is the generalized document markup language of which
XML (Extensible Markup Language) is a descendant. EpiDoc (http://epidoc.sourceforge.net/) is a set of community guidelines for marking up digital
editions of ancient texts in XML.

2e Suda On-Line (http://www.stoa.org/sol/) is a project aimed at collaborative translation of the massive 10th century Byzantine encyclopedia
known as the Suda.

1

http://epidoc.sourceforge.net/
http://www.stoa.org/sol/

However, even more than SOL, the papyrological projects encompassed in Integrating Digital Papyrology value the
scholarly integrity of data published under their aegis. us, SoSOL attempts to digitally replicate the scholarly mechanisms
of peer review these projects would normally enforce. is results in somewhat of an inversion of where and how editorial
control is exerted in comparison with SOL. While SOL users are authorized by editors during registration and are assigned
work or must request a speciëc entry (Mahoney 2009), in SoSOL users are not screened and at present work on whatever
they feel needs emendation or inclusion in the corpus. However, this distinction in the assignment of work may just arise
naturally from the differing natures of the texts involved; whereas the Suda—while large—is a bounded unit of work, the
papyri do not yet show signs of halting their expanding numbers in transcriptions and publications.

Standing in starker contrast is how submissions which have not received editorial oversight are handled: in SOL, they are
immediately publicly searchable and accessible but marked as “draft”; in SoSOL, submissions undergo review and voting by
an editorial board before publication as “canonical” and being made available for searching in the Papyrological Navigator.
is may seem restrictive, or even contradictory to claims of openness. It is indeed the former, but only inasmuch as the
editorial boards are controlling the quality of what they are willing to put their names to in the tradition of peer review. e
latter requires some discussion.

Data and Openness
“We no longer see IDP as representing at any given moment a synthesis of ëxed data sources directed by a
central management; rather, we see it as a constantly changing set of fully open data sources governed by the
scholarly community and maintained by all active scholars who care to participate. One might go so far as
to say that we see this nexus of papyrological resources as ceasing to be “projects” and turning instead into a
community.”

(Bagnall 2010)
What do we mean here by “fully open”?
On one level, it is the terms under which data is published. ough asserting any sort of copyright on the 2,000-year-old

texts themselves is perhaps nonsensical (at least in the US3), the complete set of IDP XML ëles are published with a Creative
Commons Attribution 3.0 License,4 explicitly permitting the typical varieties of scholarly reuse and citation anticipated for
the data, in line with other recent calls for open access in the humanities (Crane 2010). (Atypical and unanticipated forms
of reuse would be even more exciting.)

On another level, it is themanner in which data is published. For collaborative online projects, this is usually a challenge.
If the data is constantly changing, how do you publish it in any traditional sense? Perhaps even more challenging is this:
how do you publish the changes themselves, both retroactively and proactively?

By retroactively, we mean that the revision history of the data up to the present may itself be important; by proactively
we mean that if a user has already obtained the complete revision history at some point in time, it is better to allow them to
simply download the changes since that point. Many online collaborative environments, such as MediaWiki and the original
SOL, store all changes in a database system. is usually makes distribution of the complete revision history, particularly
proactive distribution, extremely difficult. As an example, the English-language Wikipedia was unable to distribute its
complete dataset for several years, and was only most recently able to dump its revision history in January 2010, with no
successful exports since.5 Even if they were able to do so, the only mechanism for updating such a data dump is to download
the entire several-hundred-gigabyte ële each time.

Next-Generation Version Control
We felt that the best way to approach this problem was to use a Revision Control System as the backend for the data itself,
instead of a traditional database. ough there are many well-established centralized systems such as CVS and Subversion,6

3See e.g. Bridgeman Art Library v. Corel Corp. (http://www.law.cornell.edu/copyright/cases/36_FSupp2d_191.htm), which rules that “slavish copies”
of public domain works are not copyrightable. For scholarly transcriptions and images of ancient texts, much of the goal is to produce as faithfully slavish
a copy as possible.

4“Creative Commons Attribution 3.0 License” - http://creativecommons.org/licenses/by/3.0/
5“Wikipedia:Database download - Latest complete dump of English Wikipedia” - http://en.wikipedia.org/w/index.php?title=Wikipedia:Database_

download&oldid=393163797#Latest_complete_dump_of_English_Wikipedia
6CVS, or the “Concurrent Versions System,” was started in 1986 as a version control system built atop the even-earlier “Revision Control System,”

which only operated on a single ële. Subversion was started as a later project for version control similar to CVS, but with various ëxes and improvements.

2

http://www.law.cornell.edu/copyright/cases/36_FSupp2d_191.htm
http://creativecommons.org/licenses/by/3.0/
http://en.wikipedia.org/w/index.php?title=Wikipedia:Database_download&oldid=393163797#Latest_complete_dump_of_English_Wikipedia
http://en.wikipedia.org/w/index.php?title=Wikipedia:Database_download&oldid=393163797#Latest_complete_dump_of_English_Wikipedia

in recent years there has been an explosion in the popularity of distributed version control systems (DVCSs). Typically this
means there is no “central” server except by social convention; all copies of the repository are in a sense equal and can share
changes with one another. is allows for a variety of workìow styles, and has a number of other important impacts.

One of the most popular distributed version control systems is Git, initially developed by Linus Torvalds for managing
the Linux kernel software project. Due to its broad acceptance, design choices, and proven performance on a number of
large projects, it is the backend we selected for data in SoSOL. e SoSOL codebase itself was also managed with Git from
the beginning, and is available online.7

As a result of using a DVCS for the data backend, it is possible to use Git not only to retrieve both the complete
revision history of the IDP data as managed by SoSOL8 (retroactive publication), but also to easily update your copy of
the repository as changes are published (proactive publication). Due to the distributed nature of Git, the concepts of
branching development and merging changes have been integrated into its design, making it easy to keep your copy of the
data up-to-date even if you have made your own modiëcations. (After all, if anyone can pull changes from any other copy
of the repository, merging needs to be fast and easy.) e long-running version of this behavior of splitting off your own
modiëcations is known in the open source world as “forking”. Git reduces the overhead of both forking a project, as well
as of contributing your forked changes back.

at a DVCS makes these things trivial also represents a signiëcant decision in the design of SoSOL: for the “canonical”
data repository it interacts with, it does not need to care about any external mechanisms or workìows used to introduce
changes. SoSOL only needs to keep track of changes within its domain; it is merely a front-end and social infrastructure for
easing and managing contributions. When a user edits data in SoSOL, it is forked from the main repository to allow them
to do their work without interruption. ey then submit their changes for editorial review, and when they pass muster
they are merged back into the canonical repository. However, the repository may be updated by any external process in the
interim, typically without drastically impacting the work that must be done to perform the merge.

us, the fact that IDP now uses Git for its public data repository, in combination with the license the data is distributed
under, represents the complete realization of “a constantly changing set of fully open data sources governed by the scholarly
community and maintained by all active scholars who care to participate” (Bagnall 2010). For us, “participate” in fact has
two senses: participating within our system (that is, participating in our editorial review process), or participating in any
enterprise you choose with the complete dataset which we make freely available.

Implementation
e Son of Suda On-Line environment itself is written in Ruby using the popular Rails web framework9. Instead of the
mainline Ruby interpreter written in C (usually referred to as Matz's Ruby Interpreter, or MRI, after the language's creator),
we use a Java implementation called JRuby. ough this was initially done to enable deployment of SoSOL in any Java
Servlet Container such as Tomcat, SoSOL has come to use a number of Java libraries (particularly for interacting with XML
data), facilitated by JRuby's tight Java integration.

Git Internals
Some discussion of how Git works and internally represents version history is perhaps necessary to illustrate how its design
enables and informs other design decisions in SoSOL. In Git, the version history of a project is encoded as a directed graph
of three kinds of internal objects, all of which are identiëed by the unique SHA-1 hash of the object's content.10 ese
objects form the “nodes” in Git's graph, while their contents contain the directional arrows linking them together.

e simplest instance of version history (in Git, and conceptually) is a single piece of content with one version. Bare
content is the “blob” object in Git, and has no additional metadata associated with it — these can be thought of as leaf
nodes in the graph (that is, nodes which do not point to other nodes).

7“e Son of Suda On-Line” - https://github.com/papyri/sosol
8“IDP Data” - http://github.com/papyri/idp.data. See also “IDP Data available on GitHub” (http://digitalpapyrology.blogspot.com/2011/01/

idp-data-available-on-github.html).
9Ruby is a dynamic, object-oriented, interpreted programming language. Rails is a web framework written for and in Ruby which uses the Model-

View-Controller design pattern to organize web applications.
10ink of the SHA-1 hash as a 160-bit number that uniquely identiëes any given input string. Even a small change in the string results in a very

different hash, and collisions are designed to be rare.

3

https://github.com/papyri/sosol
http://github.com/papyri/idp.data
http://digitalpapyrology.blogspot.com/2011/01/idp-data-available-on-github.html
http://digitalpapyrology.blogspot.com/2011/01/idp-data-available-on-github.html

However, having just one ële is not very useful for most projects. Git organizes and collects multiple blob objects into a
ële structure using tree objects. ese tree objects are simple plaintext ëles which list identifying hashes with their ëlenames.
Each tree object represents a single directory; for subdirectories, trees can point to other tree objects in addition to blobs,
as in Figure 1a.

Revisions in Git are stored as commit objects. ese point to a single tree, and contain metadata about the commit
(such as author, time, commit message) as well as pointers to one or more parent commit objects. us, a simple merge
would have two parent commits, while a branch or fork would be two different commits pointing to the same commit.
e fact that all of this history is stored as a connected graph is what allows the Git system itself to examine things such as
where a fork occurred when attempting to merge concurrent changes, and intelligently make the right decision based on
the chosen merge strategy.

Let's walk through a simple linear commit history to illustrate things, winding up with the graph shown in Figure 1b:

"text"

"different text"

tree

tree "GPLv2"

LICENSEREADME source

main.c

8e27be7

fd83c83

ec34630

a1e461f

b15c316

(a) A tree graph in Git

tree "text"

tree

tree

"Ryan"

"new text"

README

README

AUTHORS

"first commit"

"add AUTHORS"

"update README"

8e27be7

6124468

eee417f

28a1425

780909c

a036cbf3b387a9

68affb8

5ec586d

README

AUTHORS

1)

2)

3)

(b) A series of commits in Git

Figure 1: Visualizations of Git's internal graph structure. Red squares are blobs, blue are trees, green are commits. Text in
the top-left corner is the object's truncated hash.

1. We start our project with just a README ële containing the string “text”. Since we want to record this momentous
occasion, we commit the state of our repository with the commit message “ërst commit”. is commit points to the
hash of the tree, which contains the hash of our README.

2. Since this project is sure to be our magnum opus, we quickly decide we want to immortalize contributors by crediting
them in an AUTHORS ële. We write this out and hastily make a new commit to add it. Since the README is unchanged,
the same object from before is reused. However, because we have added a new ële, the tree has changed, so a new
tree object is made for the commit to point to.

3. Later, the mood strikes us to update the README so we do so and make a new commit. Again, a new blob object is
constructed for the new content, although this time the AUTHORS blob is able to be reused because we didn't modify
it. Because changing the README changes the blob object's hash, the tree object must store the new hash and receive
a new hash itself.

ough there are many other facets and features, this is the core of Git.
e consequence of all objects being identiëed by a unique hash of their contents means these objects can easily be

shared between copies of the repository — knowing both that there won't be conìicts between objects with different
content having the same hash, and that the same object will have the same hash no matter where it is. Since all links
between objects are part of the hashed content, any change in the graph would result in a cascade of changing hashes (as in
step three of our example). Because Git veriëes and uses these hashes for its own operation, the integrity of the repository
is incredibly robust; if you have a copy of the repository, and someone tries to rewrite history by removing or altering an
object which is already referenced, you will notice when you try to pull their changes because all descendant objects will

4

have different hashes from yours. If an object ële is corrupted, it can easily be restored from any copy of the repository;
likewise, any copy of the repository is a complete copy of the repository.

Data Sources, Publications, and Workîow
As outlined in the introduction, IDP represents the synthesis of a variety of papyrological projects managed by different
institutions. is has informed SoSOL's design in how it interacts with and models these disparate data sources.

Because these papyrological resources evolved separately, the concept of a “publication” and what deënes an object or text
may in some cases be slightly different. As an example, two distinct hands may have written two different texts on a single
piece of papyrus; HGV keeps two metadata records, while the DDbDP keeps a single transcription (but still indicating
the distinct hands inside it). ese relationships can become quite complicated, with things such as reprints of texts, or
ancient military receipt records containing hundreds of texts. In addition, the data itself is different enough that different
methods may be preferable for editing or interacting with data from a given resource. Although IDP has standardized on
EpiDoc XML encoding, it still collects a variety of different kinds of information about papyri, including transcriptions,
translations, and complex metadata.

SoSOL deals with this internally by representing each “publication” as a collection of one or more resources, which we
call “identiëers”. Because there are a variety of types of resources, we use an identiëer base class which implements common
methods for all types of resources (such as getting or setting the identiëer's content in the Git repository), while using
subclasses of this to implement behavior speciëc to a given type of resource. Each identiëer is actually called such because it
is named with a string which it is assumed corresponds to exactly one resource — for example, HGV's or DDbDP's name
for an object. Because these resources are stored as separate XML ëles with their own particular directory structure, each
type of identiëer has its own method for turning its name into a ële path.

SoSOL uses the “publication” as the unit of work for the editorial workìow — each publication corresponds to a
development branch in the Git backend. When the identiëers belonging to a publication have been modiëed, it can be
submitted to the editorial boards for review. Because we have had to deal with disparate types of resources from the begin-
ning, the review process is able to have different editorial boards for each type of identiëer. Currently this is implemented
as a sequential workìow; if a user submits a publication with changes to HGV metadata, DDbDP transcription, and HGV
translation, it will be reviewed in that order, requiring approval from each board before going to the next. Each editorial
board has their own membership and voting rules. If a submission is rejected, the user is able to see the reasons given during
voting and revise and resubmit their work. Users can also see a list of other users working on the same “publication” as well
as their contact info. If they desire to coordinate amongst themselves, they can share links to their publications which are
viewable (but not editable) by any logged in user who knows the link.

Because of Git's design, SoSOL is actually able to maintain a separate Git repository for each user and editorial board
in its backend. Despite the fact that IDP's canonical data repository is around 1GB in size, each copy can be on the order
of kilobytes because it can simply reference objects already stored in the repository it's been forked from. is means that
when a user begins editing a publication, the branch for that publication is made on their copy of the repository, and only
new objects which they create in the course of making updates must be stored in it. When they submit the publication,
this branch and its related objects are copied to the board's repository, and when they approve the publication they then
merge this branch back into the canonical data repository. Eventually, this design could be integrated with a Git server (in
the style of GitHub11), allowing each user to have direct access to their own Git repository to easily make changes using
any process they choose before submission.

Another advantage of Git's design is that accurate, transparent attribution is easily maintained in the history of each
piece of data. Interventions made by the editorial board after submission are preserved as being authored by them rather
than by the submitter. Because Git allows a distinction between “author” (who wrote a commit) and “committer” (who
put a given commit in the repository), we can record which editor made the merge to the canonical repository without
losing information about who actually authored the underlying changes. We also record the members of the editorial board
at the time a submission is accepted, by adding that they've signed off to the commit message. All of this is done as part
of a process we call “ënalization” — after a board approves something, it is assigned to a random member of the board
to undergo any ënal revisions and manual oversight of the merge into the canonical repository. As part of this, we ìatten
multiple commits made before submission into a single commit (as each time the user saves it introduces a commit, which

11“Secure source code hosting and collaborative development - GitHub” - http://github.com/

5

http://github.com/

Figure 2: A user's dashboard in SoSOL, with publications being worked on

was deemed more revision granularity than necessary for our use) which is rewritten to have the content of any individual
commit messages as well as the submission reason and editorial sign-off messages.

e advantage of all this is that the core design of SoSOL deals mainly with this identiëer/publication model, and
providing functionality for using this abstraction to have an editorial workìow on top of a Git repository. e goal was to
make these core components reusable, while providing your own implementations for how your own identiëers are edited
and aggregated into publications. One can imagine the simplest implementation as being an identiëer whose name is the ële
path, which just presents the plaintext contents of the ële for editing, and which has no relationships with other identiëers
so that each publication is a single identiëer.

Under IDP2, SoSOL manages the complex relationships between identiëers by interfacing with a piece of software
developed for the project which we call the Numbers Server. is is implemented as an RDF triplestore12 which is built
up by processing the entire canonical IDP dataset and looking for associations between resources. SoSOL can then simply
query any single identiëer in the Numbers Server to ënd all other identiëers related to it in order to aggregate them into a
logical publication. e relationships and data ìow between SoSOL, the Papyrological Navigator, and the Numbers Server
are illustrated in Figure 3.

Alternative Syntax for XML Editing
One of the proposed items for the SoSOL environment was to provide a “tagless” editing environment for the EpiDoc
XML data used by IDP. For metadata, where there is some ëxed number of possible elements, this can be achieved by
simply presenting the user with a form speciëc to the needed data types which translates to and from XML. is is what
we have done for HGV metadata, as shown in Figure 4.

However, for freeform text transcriptions like those recorded by the DDbDP, the concept of a “tagless” environment is
more challenging. Because many papyrological materials are damaged and difficult to read, scholarly transcriptions record

12An RDF (Resource Description Framework) triplestore provides a way of storing and querying the relationships between resources as “triples” in
subject-predicate-object form, such as “dogs are animals” or, in this case, “DDbDP's P.Oxy. 1 53 relates to HGV number 20715”.

6

IDP Data Git Repository

HGV
Filemaker

db

HGV
meta
XML

DDB
XML

SoSOL

HGV
translation

XML

PN indexer

PN SOLR
indexes

papyrological
navigator

HGV legacy
website

NYU
preservation

repository

Reverse
Crosswalker

Trismegistos
et al.

SIPs

EpiDoc
RNG/XSLT

idp.mapping

Leiden+
syntax

APIS
XML

PN
HTML

Numbers
Server

Figure 3: Software components and data ìow at the conclusion of IDP2

7

Figure 4: HGV metadata entry form in SoSOL

a number of things about the reading of the text itself. If letters of a word can't be made out on the object, but you can
interpolate from context what they likely were, you should indicate that your restoration is a result of that process. is
happens so often when editing papyrological texts that a shorthand for indicating them in the text itself was developed and,
in a 1931 meeting at the University of Leiden, standardized as a set of rules called the Leiden conventions. Epigraphers
also adopted these conventions as they faced many of the same challenges, and along with papyrologists have used them for
publishing printed transcriptions ever since (as in Figure 5).

EpiDoc is a TEI-based XML encoding standard for marking up the same sort of textual semantics represented in Leiden,
with additional standardized markup for other features typically needed when encoding ancient texts. For example, numbers
which are written as Greek text can be marked semantically as numbers with their value, orthographic corrections can have
both the normalized and original word linked, and so forth. us the key advantage of EpiDoc is it acts as a superset of
Leiden with explicit, computationally-actionable, semantics.

Because we have our transcriptions already encoded in EpiDoc, we wanted to surface these facets of it to users, without
burdening them with the full verbosity of XML markup. We also wanted them to be able to explicitly mark up new texts in
the same environment. We contemplated trying to use the contentEditableHTML attribute to provide a sort of “rich text”
what-you-see-is-what-you-get (WYSIWYG) text entry form. However, browser implementations of this feature vary wildly
in behavior and often confound user expectations, and what exactly the meaning of “WYSIWYG” is when semantically
marking up things such as numbers is debatable.

As a result, we decided to use a simple plaintext form element utilizing a transformation of the XML to make the text
more legible and easier to edit quickly. Of course, to update the modiëed plaintext would require a transformation back to
XML to save it in our system. One way to do this would be to write two separate transform processes, one from XML to
plaintext, and one from plaintext to XML. However, verifying and maintaining such a process would be difficult.

Instead, we use a tool called XSugar13 to perform both directions of the XML transform. is utility allows you to deëne
a single context-free grammar where each rule has both an XML representation and a non-XML representation. us it can

13“XSugar - Dual Syntax for XML Languages” - http://www.brics.dk/xsugar/

8

http://www.brics.dk/xsugar/

[ἔτους α (?) Αὐτοκράτορος] ̣ ̣[̣] ̣ ̣του
[- ca.12 -] Σεβαστοῦ
[εἴργ(ασται) ὑ(πὲρ) χω(ματικῶν) ἔ]ργ(ων) τοῦ αὐτοῦ̣ πρώτου (ἔτους)
[-ca.?-] κ κϛ ἐ[ν] τῇ Ἐπα -
[γαθιαν]ῇ διώ(ρυγι) Βακχιά(δος)
[-ca.?-] Πατκ(όννεως) τοῦ Θεαγένους
[̣ ̣ ̣ ̣ ̣ ̣] μη(τρὸς) Ταύρεως
[-ca.?-] (hand 2) σεση(μείωμαι)

Figure 5: Typical print transcription following Leiden conventions (P.Sijp., 41a)

1. [ἔτους] [<#α=1#> (?)] [Αὐτοκράτορος] .2[.1].2του
2. [ca.12] Σεβαστοῦ
3. [(εἴργ(ασται)) (ὑ(πὲρ) χω(ματικῶν))] ([ἔ]ργ(ων)) τοῦ αὐτοῦ̣ πρώτου ((ἔτους))
4. [.?] <#κ=20#> <#κϛ=26#> ἐ[ν] τῇ Ἐπα
5.- [γαθιαν]ῇ (διώ(ρυγι)) (Βακχιά(δος))
6. [.?] (Πατκ(όννεως)) τοῦ Θεαγένους
7. [ca.6] (μη(τρὸς)) Ταύρεως
8. [.?] $m2 (σεση(μείωμαι))

Figure 6: Leiden+ representation of the P.Sijp., 41a text

parse either representation into an intermediate form, and then use the same ruleset to output the opposite representation.
Additionally, the tool can check that this transformation is reversible — that is, round-trips of a given input do not alter
it (Brabrand et al. 2008). Due to the immense size of the DDbDP corpus (over 55,000 transcriptions), we use automated
nightly runs of transformations on the entire corpus to both verify and improve our deënition of the Leiden+ grammar as
well as reduce encoding errors in the source XML (many being difficult edge cases left over from the transitioning of the
DDbDP from SGML to EpiDoc). We also use an XML normalization process to reduce the amount of “thrashing” in the
version history — small changes to the text shouldn't alter unrelated parts of the XML and make it hard to spot the actual
change when looking through the ële's history.

We call our non-XML representation of EpiDoc markup “Leiden+”, as it attempts to use the same symbols as Leiden
where possible, but is also able to unambiguously represent the additional markup enabled by EpiDoc encoding. Figures 5
and 7 illustrate how a traditional print transcription might be marked up in EpiDoc XML, with Figure 6 being the Leiden+
transformation of that XML. As you can see, things like the Greek letter “κ” on line four being the number “20” are implicit
in print, but explicit in both EpiDoc and Leiden+.

ough Leiden+ must in some cases be more verbose than traditional Leiden, this is due to the fact that Leiden+ must
be able to be transformed into unambiguous, valid EpiDoc XML. For example, on line three, abbreviations expanded by
an editor use nested parentheses instead of a single pair around just the expansion, because the unit of text which is being
expanded must be marked up as well. Because multiple standalone Unicode combining underdots (indicating vestiges of
illegible characters, as in line one of the example text) can be confusing to type and count by themselves, Leiden+ simply
uses a period followed by the number of characters. However, for characters which are unclear but can be inferred from
context (as in “ῦ” of “αὐτοῦ” at the end of line 3), Leiden+ preserves the combining underdot for readability, and we provide
a JavaScript helper for inserting the character (a screenshot of Leiden+ as it appears with helpers in the editing environment
is shown in Figure 8). Users can, of course, still edit the XML directly, with a button provided to copy the entire content of
each text area to their clipboard so they can paste it into their own editor. In either case, submissions are validated against
the EpiDoc RELAX NG schema14 before saving in order to ensure that invalid XML does not make its way into the system.

14RELAX NG (REgular LAnguage for XML Next Generation) allows the creation of complex XML validation rules not possible with traditional XML
DTDs (Document Type Deënitions).

9

<div xml:lang="grc" type="edition" xml:space="preserve">
<ab>
<lb n="1"/><supplied reason="lost">ἔτους</supplied> <supplied
reason="lost" cert="low"><num value="1">α</num> </supplied> <supplied
reason="lost">Αὐτοκράτορος</supplied> <gap reason="illegible" quantity="2"
unit="character"/><gap reason="lost" quantity="1" unit="character"/><gap
reason="illegible" quantity="2" unit="character"/>του
<lb n="2"/><gap reason="lost" quantity="12" unit="character"
precision="low"/> Σεβαστοῦ
<lb n="3"/><supplied reason="lost"><expan>εἴργ<ex>ασται</ex></expan>
<expan>ὑ<ex>πὲρ</ex> χω<ex>ματικῶν</ex></expan></supplied>
<expan><supplied reason="lost">ἔ</supplied>ργ<ex>ων</ex></expan> τοῦ
αὐτο<unclear>ῦ</unclear> πρώτου <expan><ex>ἔτους</ex></expan>
<lb n="4"/><gap reason="lost" extent="unknown" unit="character"/> <num
value="20">κ</num> <num value="26">κϛ</num> ἐ<supplied
reason="lost">ν</supplied> τῇ Ἐπα
<lb n="5" type="inWord"/><supplied reason="lost">γαθιαν</supplied>ῇ
<expan>διώ<ex>ρυγι</ex></expan> <expan>Βακχιά<ex>δος</ex></expan>
<lb n="6"/><gap reason="lost" extent="unknown" unit="character"/>
<expan>Πατκ<ex>όννεως</ex></expan> τοῦ Θεαγένους
<lb n="7"/><gap reason="lost" quantity="6" unit="character"
precision="low"/> <expan>μη<ex>τρὸς</ex></expan> Ταύρεως
<lb n="8"/><gap reason="lost" extent="unknown" unit="character"/>
<handShift new="m2"/><expan>σεση<ex>μείωμαι</ex></expan>

</ab>
</div>

Figure 7: EpiDoc XML fragment equivalent to the preceding Leiden+

10

Conclusions
While Leiden+ does take some experience to get used to, in EpiDoc training seminars where we have introduced students
and papyrologists to using it as an alternative for editing XML, the response thus far has been great. Users have entered
and submitted thousands of new texts for inclusion in the DDbDP using the production version of SoSOL running on
papyri.info, dubbed the Papyrological Editor.15 As of this writing almost 25,000 commits have been made by over 200
different authors since the transition of IDP to using Git for its data backend, the majority of these through SoSOL. New
electronic editions of texts can now be made available much more quickly, and the potential for born-digital editions with
vetting and version control has been enabled by the system. In addition, the Perseus Digital Library has recently announced
that they plan to use SoSOL “to decentralize the curation, annotation, and general editing of the TEI XML texts that it
hosts”.16

e model of loosely-coupled tools operating on their interests over standard interfaces (SoSOL's interactions with Git,
SoSOL and PN using standard RDF to interact with the Numbers Server, etc.) has allowed for ìexible and unexpected
uses with very little additional work. For example, because the Leiden+ grammar deënition and transformation code is
completely separate from SoSOL and only included externally, the same code should be easily reusable by any project
wishing to use it in conjunction with their standard EpiDoc XML texts. e Numbers Server being implemented as an
RDF triplestore has also had great utility, allowing arbitrary SPARQL17 queries to be written which reveal useful information

15“Papyrological Editor” - http://papyri.info/editor/, the public, running instance of SoSOL for IDP.
16http://www.perseus.tufts.edu/hopper/ - see news item of March 20, 2012.
17SPARQL (SPARQL Protocol and RDF Query Language) is the language used to query and discover relationships in RDF triplestores. See also

Figure 8: Editing Leiden+ in SoSOL

11

http://papyri.info/editor/
http://www.perseus.tufts.edu/hopper/

about complex relationships in the data.
We believe that exposing our complete dataset and its history to the community is the best approach to enabling true

community ownership of the data. Using a DVCS for our data backend in the editing environment instead of a traditional
relational database backend is what allows us to do this with very little friction, and facilitates direct interaction with the
data repository without necessitating going through our project-speciëc editing environment. is is an approach which
could be adopted by other Digital Humanities projects, even if not using SoSOL itself. at the system transparently
preserves attribution at every step will, we hope, foster a sense that users do have some investment and ownership in their
contributions. Additionally it is hoped that this will enable academic institutions to recognize individuals' work in the
system as scholarly activity, equivalent to work with traditional print publications.

is is also a way of moving away from the rigidity and implied authority of print publications. e DDbDP is not
a ëxed resource, ënished at some date, unwavering and conëdent that it knows all; rather, it is a collection of conjectures,
now easily capable of being revisited, revised, and improved. e technological framework now in place aims to reduce
the overhead of these activities, to speed the expansion of knowledge and detection of error. It invites in the Popperian
spirit: “if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing
it as severely as you can” (Popper 1963). By publishing our data as a resource which is easily capable of decentralization
and reuse, we hope to also apply this ideal to the system itself; while submissions which pass our system of editorial review
derive their authority from the composition of the editorial board and the submitter, others may independently modify and
publish our data under their own authority.

References
Roger Bagnall. Integrating Digital Papyrology. Mellon Foundation, March 2010. URL http://hdl.handle.net/2451/29592.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax for XML languages. Information Systems, 33
(4-5):385--406, June-July 2008.

Gregory Crane. Give us editors! Re-inventing the edition and re-thinking the humanities. InOnline Humanities Scholarship:
e Shape of ings to Come. Mellon Foundation, March 2010. URL http://cnx.org/content/m34316/latest/.

Tom Elliott. Background and funding: Integrating digital papyrology, 2008. URL http://idp.atlantides.org/trac/idp/wiki/
BackgroundAndFunding.

Raphael Finkel, William Hutton, Patrick Rourke, Ross Scaife, and Elizabeth Vandiver. e Suda On Line. Syllecta Classica,
11:178--190, 2000. URL http://www.stoa.org/sol/about.shtml.

Anne Mahoney. Tachypaedia Byzantina: e Suda On Line as collaborative encyclopedia. Digital Humanities Quarterly, 3
(1), 2009.

Karl Popper. Conjectures and Refutations, pages 30--36. Routledge Classics, 1963.

A.J.B. Sirks and K.A. Worp, editors. Papyri in Memory of P.J. Sijpesteijn. Number 40 in American Studies in Papyrology.
e American Society of Papyrologists, 2007.

Joshua D. Sosin. Digital Papyrology. In 26th Congress of the International Association of Papyrologists, August 2010. URL
http://www.stoa.org/archives/1263.

footnote 12.

12

http://hdl.handle.net/2451/29592
http://cnx.org/content/m34316/latest/
http://idp.atlantides.org/trac/idp/wiki/BackgroundAndFunding
http://idp.atlantides.org/trac/idp/wiki/BackgroundAndFunding
http://www.stoa.org/sol/about.shtml
http://www.stoa.org/archives/1263

